Sum theorems for maximally monotone operators of type (FPV)

نویسندگان

  • Jonathan M. Borwein
  • Liangjin Yao
چکیده

The most important open problem in Monotone Operator Theory concerns the maximal monotonicity of the sum of two maximally monotone operators provided that the classical Rockafellar’s constraint qualification holds. In this paper, we establish the maximal monotonicity of A+ B provided that A and B are maximally monotone operators such that star(domA)∩ int domB 6= ∅, and A is of type (FPV). We show that when also domA is convex, the sum operator: A+B is also of type (FPV). Our result generalizes and unifies several recent sum theorems. 2010 Mathematics Subject Classification: Primary 47H05; Secondary 49N15, 52A41, 90C25

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The sum of two maximal monotone operator is of type FPV

In this paper, we studied maximal monotonicity of type FPV for sum of two maximal monotone operators of type FPV and the obtained results improve and complete the corresponding results of this filed.

متن کامل

Maximality of the sum of the subdifferential operator and a maximally monotone operator

The most important open problem in Monotone Operator Theory concerns the maximal monotonicity of the sum of two maximally monotone operators provided that the classical Rockafellar’s constraint qualification holds, which is called the “sum problem”. In this paper, we establish the maximal monotonicity of A+ B provided that A and B are maximally monotone operators such that domA ∩ int domB 6= ∅,...

متن کامل

Maximality of the sum of a maximally monotone linear relation and a maximally monotone operator Dedicated to Petar Kenderov on the occasion of his seventieth birthday

The most famous open problem in Monotone Operator Theory concerns the maximal monotonicity of the sum of two maximally monotone operators provided that Rockafellar’s constraint qualification holds. In this paper, we prove the maximal monotonicity of A+B provided that A,B are maximally monotone and A is a linear relation, as soon as Rockafellar’s constraint qualification holds: domA ∩ int domB 6...

متن کامل

The sum of a maximal monotone operator of type (FPV) and a maximal monotone operator with full domain is maximal monotone

The most important open problem in Monotone Operator Theory concerns the maximal monotonicity of the sum of two maximal monotone operators provided that Rockafellar’s constraint qualification holds. In this paper, we prove the maximal monotonicity of A+B provided that A and B are maximal monotone operators such that domA ∩ int domB ̸= ∅, A+NdomB is of type (FPV), and domA∩domB ⊆ domB. The proof ...

متن کامل

The sum of a maximally monotone linear relation and the subdifferential of a proper lower semicontinuous convex function is maximally monotone

The most important open problem in Monotone Operator Theory concerns the maximal monotonicity of the sum of two maximally monotone operators provided that Rockafellar’s constraint qualification holds. In this paper, we prove the maximal monotonicity of A + ∂f provided that A is a maximally monotone linear relation, and f is a proper lower semicontinuous convex function satisfying domA ∩ int dom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013